Passive-aggressive Online Learning for Relevance Feedback in Content based Image Retrieval

نویسندگان

  • Luca Piras
  • Giorgio Giacinto
  • Roberto Paredes
چکیده

The increasing availability of large archives of digital images has pushed the need for effective image retrieval systems. Relevance Feedback (RF) techniques, where the user is involved in an iterative process to refine the search, have been recently formulated in terms of classification paradigms in low-level feature spaces. Two main issues arises in this formulation, namely the small size of the training set, and the unbalance between the class of relevant images and all other non-relevant images. To address these issues, in this paper we propose to formulate the RF paradigm in terms of Passive-Aggressive on-line learning approaches. These approaches are particularly suited to be implemented in RF because of their iterative nature, which allows further improvements in the image search process. The reported results show that the performances attained by the proposed algorithm are comparable, and in many cases higher, than those attained by other RF approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Image Retrieval: Feature Primitives, Feature Representation, and Relevance Feedback

In this paper we review the feature selection and representation techniques in CBIR systems, and propose a unified feature representation paradigm. We revise our previously proposed water-filling edge features with newly proposed primitives and present them using this unified feature formation paradigm. Multi-scale feature formation is proposed to support cross-resolution image matching. Sub-im...

متن کامل

Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval

of thesis entitled: Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval Submitted by HOI, Chu Hong (Steven) With the explosive growth of multimedia data, more and more research attentions have been devoted to visual information retrieval. Image retrieval, particularly content-based image retrieval (CBIR), has been actively studied in multimedia information retrieval co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013